
Using Simulation to Validate Style-Specific Architectural Refactoring Patterns

Zoë Stephenson, John McDermid and Jason Choy
High-Integrity Systems Engineering Group

Department of Computer Science
University of York

Heslington, York YO10 5DD, UK
Telephone: +44 1904 432749

Email: zoe@cs.york.ac.uk

Abstract

When developing a new domain-specific architectural
style, there can be uncertainty about the feasibility of us-
ing that style. In particular, the HADES architectural style
contains refactoring patterns intended to remove undesir-
able scheduling features such as deadlock and livelock, but
these patterns have not yet been validated. We report on
the development of a simulator environment to help vali-
date these refactoring patterns and generally demonstrate
HADES architectures to non-specialists. The simulator im-
plements the synchronisation and coordination specified by
the architecture to help visualise the behaviour of the other-
wise static architectural descriptions. We found simulation
to be a useful tool in both visualising complex interaction
semantics and in validating refactoring patterns.

1. Introduction

Software architecture is principally concerned with the
organisation of software components and their interactions.
Architectures are typically structured so that key emergent
properties such as throughput and user response can be as-
sessed. Our research focuses on the use of software in de-
pendable embedded systems; examples of the properties of
interest here are freedom from exceptions, data freshness,
liveness, data accuracy and process schedulability. Soft-
ware that is used in this fashion encompasses control and
monitoring functions, hence its architecture is most often
presented in a data-flow style.

A data-flow style expresses the architecture in terms of
activity components, store components and data flowing
between those components. Activity components perform
transformations on the data, and each possible flow of data
through the components is an individual transaction.

In a survey of architectural styles [18], Shaw uses an
embedded cruise control system to compare the features of
eleven architectural styles, all suited to the description of
embedded control systems. Many of these styles use some
form of data-flow diagram to show how the information
flows through the control system. The Simulink tool [12]
is a commonly-used simulation tool that specifies control
systems in terms of transformation blocks and signals. The
on-screen simulation models are similar to the control di-
agrams used in the control engineering profession, further
suggesting that a data-flow style is to be preferred in this
domain.

Embedded control systems often require particular types
of formal analysis to demonstrate their correctness. The
state of the art in comprehensive analysis of dataflow style
architectures is exemplified by the Real-Time Networks
(RTN) formalism [17]. Based on an earlier successful ar-
chitectural effort, MASCOT [19], this style provides an un-
derlying logic to define the sequences of interaction for par-
ticular protocols and activities.

HADES is a data-flow based architectural style origi-
nally intended for the representation and organisation of
reusable SPARK Ada components [20]. It was inspired
by the MASCOT family of architectural styles, but uses a
simple transition-constraint semantics to synchronise com-
ponent behaviours. Its original focus on reusability led to
a flexible mechanism of implicit interface refinement, an
area where systems engineering and software engineering
approaches tend to exhibit large differences.

Systems engineering methods tend to treat all interfaces
as fixed, potentially bidirectional connections, much like
the pins on a panel connector or an integrated circuit pack-
age. At the systems level, interfaces are often prescribed
by standards and customers, further reinforcing this static
view. Interfaces are rarely altered; instead, unused connec-
tions are given new purposes, or whole new interfaces are
added, sometimes crossing subsystem boundaries. Adding



Control Engine

Control Thrust Reverser

Condition Control
Inputs

Derive EPR Control
Suppression

Derive Thrust
Modulation

Derive Control &
Feedback Outputs

Condition Control
Outputs

Thrust Reverser
Control Inputs

Abstract Control
Inputs

Inadvertent Deploy
Thrust Limiting: Pool

Abstract Control
Outputs

Pilot Commands
[forward, reverse]

Thrust Modulation

EPR Control
Suppress

Thrust Reverser
Feedback Status

Control Thrust
Production

Feedback Status
Management

Thrust Reverser
Control Outputs

1

2

3

4

5

6

7

8

9

10 11

Figure 1. Example HADES diagram with labelled language features

new interfaces becomes especially important when dealing
with safety-critical systems, as fault detection and accom-
modation often need access to information from multiple
locations.

In the software world, interfaces are typically unidirec-
tional; one package defines entry points (e.g. in the form
of method or function calls) and any other package may
make use of those entry points. Interfaces in object-oriented
software systems are generally designed to be extensible;
classes implementing the interface may provide specialisa-
tions and additional methods, for example. Encapsulation
and information-hiding rules generally prevent information
from crossing subsystem boundaries directly without some
explicit forwarding mechanism.

Interfaces in safety-critical systems pose a problem for
reuse. If the interface is in the systems engineering style,
then reuse in a different context can be difficult — the fail-
ure characteristics of the whole system can change, leading
to knock-on changes to the information needed for fault ac-
commodation. Similarly, using a software engineering style
of interface makes it difficult to route the information re-
quired for fault detection and accommodation through the
architecture, as this generally means making data visible to
modules for the sole purpose of passing on to other mod-
ules.

HADES attempts to provide an interface mechanism
somewhere between the two, to provide for reuse in a
safety-critical context. The data passed between compo-

nents may be refined hierarchically, in a manner similar
to adding new fields to a record structure; it may also be
refined by adding new data that is not part of an existing
interaction. The synchronisation and decomposition rules
guarantee that commitments made in the architecture at one
level are not broken by refinements of that architecture.

The diagram in Fig. 1 shows a typical HADES model,
with numbered features as follows:

1. Activities are components represented using rounded
rectangles.

2. Data areas are components represented using ordinary
rectangles.

3. Activities communicate only with data areas, and data
areas communicate only with activities.

4. Activities and data areas are graphically decomposed
— data areas into further data areas, and activities into
networks of activities and data areas.

5. Data areas can carry different protocols. The default
data protocol is “Value”, a simple transmission of a
value from one activity to another. Other options are
“Pool” (shared data) and “Queue”.

6. Activities and data areas communicate over connec-
tors, represented using directed arrows.

7. Data flows along a connector in the direction of the
arrow.



8. The component responsible for initiating the commu-
nication has a filled circle on its end of the connector.

9. A data area may only initiate a communication in re-
sponse to receiving data or a request for data from an
activity.

10. Perpendicular lines on a connector are synchronous
termination — the connection is held up until the data
has been used.

11. Diagonal lines on a connector are asynchronous termi-
nation — the connection is terminated on delivery of
the data.

HADES follows the tradition established in dataflow
styles and the MASCOT-derived ADLs that data stores —
even for data transmitted between just two components —
are components in their own right. HADES connectors
specify the direction of data flow and synchronisation of
data access, and a structure that might be considered a con-
nector in a different style may well be expressed in HADES
as a connector, a data area component and another connec-
tor.

The underlying behaviour of activity and data area com-
ponents is controlled by a set of transition-constrained
finite-state automata, as in the example in Fig. 2. The di-
agram shows two activities communicating asynchronously
over a passive data area. Below the diagram, each compo-
nent is expanded into state machines with rectangles repre-
senting states and labelled vertical arrows representing tran-
sitions. Each label contains a number of single-letter iden-
tifiers and then a remark to document the label. The start
state is replicated at the bottom so that the transition con-
straints are not cluttered by the transitions that return to the
start state. The dotted lines on the diagram represent the
flow of information, with a circle in the middle of the pool
machine to represent the item being held in the pool.

Connectors are translated into constraints on transitions
with particular labels, represented by lines perpendicular
to those transitions. So, C1 is represented by constraints
C↔Q, O↔I and D↔S; C2 by N↔Q, O↔I and D↔S.
Each constraint prevents the connected transitions from be-
ing available unless all of those transitions are taken to-
gether. Further constraints can also be derived from partic-
ular arrangements of parent and child components to ensure
that child components do not renege on the commitments
of their parent component interfaces. The intent of these
rules and semantics is to ensure that any arrangement of
architectural elements will permit the flow of data without
deadlock or livelock, and that potential processing bottle-
necks may be identified for further analysis. However, it is
trivial to construct an architecture in the HADES style that
causes a deadlock; one such architecture is shown in Fig. 3.
To overcome this issue without complicating the underlying

semantics, a set of refactoring patterns is added to the style,
as shown at the top of Fig. 4. Each of the models on the left
exhibits a deadlock; the models on the right should perform
the function intended of the models on the left, but without
the associated deadlock.

For example, examine the left-hand model fpush. The
intent is to perform a chain of calculations A1, A2, A3 and
feed back the result from A3 as an input to the next iter-
ation of A2. However, the components A2, D2, A3 and
D3 all form a request loop, causing a deadlock. The pre-
ferred solution with a loop of this kind is to explicitly store
the feedback parameter D3 in a data pool. A2 can read the
value independently of A3 setting the value. The presence
of a data pool should also prompt the designer to verify the
first-pass behaviour of A2, a need that was not so readily
apparent in the original structure.

These patterns are intended to eliminate common prob-
lematic structures while preserving the overall synchronisa-
tion in the architecture. This paper is concerned with the
validation of these refactoring patterns. A pattern of this
type is considered to be valid if:

• It identifies a problematic HADES structure that ex-
hibits liveness, deadlock or some other synchronisa-
tion problem;

• Its solution does not exhibit any of these problems;

• Its solution exhibits the behaviour that was intended in
the original structure. That is, apart from the changes
to synchronisation, activities are able to process data
from the same sources and produce the same kinds of
outputs.

Three related technologies are useful for the determina-
tion of the above characteristics: theorem-proving, model-
checking and simulation. While theorem-proving and
model-checking are powerful techniques for the identifica-
tion of the presence or absence of synchronisation prob-
lems, simulation offers an advantage in bringing out the dy-
namic behaviour of the architectural problem and solution
being assessed. This is an important feature in helping to
deliberate over the intended behaviour, and so the simula-
tion approach is preferred for the validation of the HADES
refactoring patterns. A simulator is a valuable tool for a
number of other reasons:

• The on-screen animation of the architecture can pro-
vide a more accessible representation of the behaviour
for system engineers and programmers.

• The use of simulation at the level of software is similar
to the use of simulation at the system level to validate
control algorithms; skills and mental models of be-
haviour are likely to be more easily learned and trans-
ferred.



A1 A2D: Pool

W

WIn

CIn

Q;N:requested

I:connected_in

Proc

S:supplied

Susp

C:computed

Cout

O:connected_out

WRel

D:delivered

W

R:released

W

WIn

CIn

Q;N:requested

I:connected_in

Proc

S:supplied

Susp

C:computed

Cout

O:connected_out

WRel

D:delivered

W

R:released

W

WIn

Rx

Q:requested

I:connected_in

Str

S:supplied

Ret

C:cached

Tx

O:connected_out

WRel

D:delivered

W

R:released

C1 C2

N:requested

Figure 2. Example transition constraints in HADES



A D

Figure 3. Example HADES diagram with
deadlock; requests block waiting for data
that relies on the result of those requests

• The simulator can show the state of each component,
giving an explicit view of the underlying behaviour of
the architecture; this helps in demonstrating the under-
lying semantics.

The following section reports briefly on the development
of the simulator environment. Section 3 shows the use of the
simulator to evaluate the refactoring patterns and to evaluate
complex designs to which those patterns had been applied.
In Section 4 we report on similarities with other work in
the field, and our conclusions and ideas for further work are
covered in Section 5.

2. Simulator Development

This section describes the development of the simulator
environment. The simulator is intended only for the anima-
tion of HADES architectures, with support for connection
to arbitrary scripting and analysis tools.

2.1. Test Cases

The test cases for the simulator environment came from
three sources:

• The HADES report [20] contains four refactoring pat-
terns to eliminate common structures that cannot be
correctly synchronised. The pre- and post-refactoring
structures in these patterns form the basis of the test
suite.

• When discussing the underlying semantics of HADES
with other researchers, there were two examples for
which we could not agree on the intended behaviour.
These curious diversions were added to the test suite.

• Two case studies were drawn from experience in de-
pendable embedded systems design:

– Missile launch control (adapted from a real-time
network description [16]) — see Fig. 5.

– Engine thrust reverse (using the model from the
HADES manual [20, p35]) — see Fig. 1.

These case studies are used as a way of gaining confi-
dence in the ability of the refactoring patterns to remove
problematic architectural structures. Fig. 4 summarises the
individual test models used.

2.2. Implementation

The simulator was developed in an agile fashion using
Java. Consultation between the developer and the customer
occurred at least once per day to ensure that issues were
promptly addressed and requirements were clarified and ex-
panded as needed. Java was chosen to help ensure portabil-
ity and maintainability of the implementation.

The diagram in Fig. 6 gives an overview of the simulator
implementation. Table 1 shows the different requirements
areas and the design choices and patterns used to meet those
requirements.

3. Evaluation

We presented 12 test cases in total to the simulator for
evaluation. In each case, the simulator was used to deter-
mine the following properties:

• Did the simulation proceed so that components were
able to move into and out of computation and storage
states? Some arrangements of components were ex-
pected to “lock up” and not allow any part of the archi-
tecture to proceed.

• When activities used data, was that data from a consis-
tent snapshot of the overall inputs?

• When activities were decoupled with pools and
queues, did both activities get an equal chance to pro-
ceed with their computations?

For the test cases that represent the pre- and post-
refactoring stages of the refactoring patterns, the pattern
validation steps outlined in Section 1 were also applied, us-
ing the simulator output to determine whether the refactored
architectural structure was consistent with the intent of the
original structure. All evaluation properties were deduced
manually from the individual simulation steps produced by
the simulator.

The results of the evaluation are presented in Table 2.
The columns of the table list the model, whether a dead-
lock was encountered, whether a deadlock was expected
(all of the pre-refactoring models were expected to dead-
lock, for example), whether it was possible to determine the
age of the data used in each activity, and whether the simu-
lation was live (i.e. all of the components were able to cycle
through their states).



F
Arg

A

Res

F A
Fun

Arg

f13 f14

A1 D1A2D3

A3D4: Pool D2

A

f18

A1 D1A2D3

A3D4: Pool D2

A

DTEMP ATEMP

f19

fpush

A1 D1 A2 D2 A3

D3: Pool

f17a

fpull f17b

A1 D1 A2 D2 A3

D3: Pool

Launcher Control Engine

lraam (detail elsewhere) f28 (detail elsewhere)

A1 D1 A2 D2 A3

D3

A1 D1 A2 D2 A3

D3

A D

B

X

Y

x1 x2

A D

B Y

X

Refactoring Patterns

Additional Problems

Full Studies

Figure 4. HADES models used to validate HADES semantics and refactoring patterns



Table 1. Requirements and design choices
Requirement Design

Create a framework to access the existing XML rep-
resentation of the HADES diagram and represent its
objects.

The XML representation is accessed through a dedicated input/output system. The simulation passes an empty
model to the input system when reading the model from the filesystem; the XML system uses the interface to the
model to construct the components, connectors and constraints.

Analyse the diagram to determine validity and dis-
cover parent/child connector relationships.

Only syntactically legal diagrams may be constructed; the model facade rejects operations that would create an
illegal diagram. Whenever a simulation is started, constraints are computed if the diagram has changed since the
previous simulation.

Create a visualisation system to present the diagram
to the user.

The user interface is separated from the model using the observer pattern. The user interface controls all aspects of
the visual presentation

Create a model of activity behaviours such as normal-
distribution outputs or continuous transmission.

Activity behaviour is created using a specific behaviour component attached to the activity. The use of a separate
component allows for the simulation of architectures with different behaviours — for example, components can be
tied to a global clock.

Create user interaction to store and retrieve settings
such as behaviour definitions for activities.

The simulation facade presents a method that causes the output of simulation details such as behaviour definitions
to a file.

Run simulations until terminating conditions occur,
until no data can be produced, or for a specified time,
at the user’s control.

The simulation steps the state of each part of the model according to the transition-constrained automata semantics.
The user interface can query the state of the simulation through that interface and terminate as needed.

Store simulation results in a log file. The simulation facade presents a method that causes the output of simulation results to a given log file.
Display component states and data tokens on the main
diagram during simulation.

The simulation facade allows the user interface to observe the state of each component and its data content. Com-
ponent observers show the current state alongside the name; connector observers show the movement of data tokens
by animating a visual representation along the path of the connector. Tokens carry a representation of their path
through the architecture to assist with analysis.

Display the full state machine and the transition con-
straints for each component and connector during
simulation.

The definition of the state machine layout for each component type is held in a separate class, for use by the user
interface when rendering the layout during simulation. The separation ensures that definitions are shared when
appropriate, and allows for flexibility in the way state machines are shown. The same data could also be used to
export the model as a complete state machine for other tools.

Allow cue/review/record/retrieve in the user interface
to view simulation results.

The simulation stores a snapshot of the model at each simulation step. The interface to the simulation allows the
user interface to retrieve a specific simulation step for rendering.

Allow full editing of the diagram in the user interface. The user interface is part of an overall model-view-controller pattern that allows for editing of the diagram using the
simulation tool.

Mode Controller

Timeout Generator

Mode Events: Queue

Mode: Pool Interlock Handler

Timer Setup

Stop Firing: Pool

Separation AutopilotBody Motion Inertial Navigation Missile State

Missile State: Pool

Transfer AlignmentRead Aircraft
Messages

Write Aircraft
Messages

Aircraft Messages In

Aircraft Messages Out:
Pool

Initial Position: Pool

Target Position: Pool

Aircraft INS Data

Aircraft Manoeuver: 
Pool

Actuator Demands

BIT Cmd

Aircraft INS: Pool

Status Reports

Manage BIT

Missile Status
Summary: Pool

Status Reporting

Missile Ident: Pool

Figure 5. An LRAAM Launcher Design (trans-
lation from Figure 3 of the LRAAM documen-
tation [16])

XML Input/Output

Simulation

Traces

Model

Connectors

Constraints

User Interface

observe
read write

store

step

manage

associate

associate

Behaviour

Components

Figure 6. Simulator overview



Table 2. Simulation results
Model Deadlock Expected Freshness Liveness
f13 Yes Yes - -
f14 No No Yes Yes
f18 Yes Yes - -
f19 No No Yes Yes
fpush Yes Yes - -
f17a Yes No - -
fpull Yes Yes - -
f17b Yes No - -
x1 No Yes Yes Yes
x2 No No Yes Yes
lraam No No Yes No
f28 Yes No - -

The evaluation of the refactoring patterns is shown in Ta-
ble 3. Here, the columns show the pair of models taken from
the pattern, whether the deadlock was detected, whether the
refactoring eliminated the deadlock and whether the intent
of the model was preserved. The entries labelled “Yes*”
indicate that while the deadlock was not eliminated by the
pattern as described, the only changes were to synchroni-
sations; all of the components remained the same, and the
directions of their data transfers remained the same.

The simulator was used to diagnose the synchronisation
problems with the f17 models; the cause was identified as
the loop of synchronous terminations on the connectors.
Weakening one of the connections to asynchronous termi-
nation allowed these models to operate without deadlock.
Other problems that were observed during simulation in-
cluded:

• The original version of the model shown in Fig. 1 did
not use the pool type for the data area “Inadvertent De-
ploy Thrust Limiting”. This led to a deadlock as the
request from “Derive Thrust Modulation” and the sup-
ply from “Derive Control & Feedback Outputs” were
out of step. Changing the data area to a pool decoupled
the interaction properly.

• In that same diagram, the parent activities “Control En-
gine” and “Control Thrust Reverser” share no inputs
or outputs with their child activities. This allows those
parent activities to clock through their states without
regard for the behaviour of their subcomponents. This
phenomenon does not interfere with the ability to sim-
ulate the model, but is unintuitive.

• In the f17 models, the data paths along which data to-
kens are collected include a cycle. Each time round
that cycle, the tokens accumulate the full history of
previous cycles. The implementation had anticipated
this in part by storing references to the paths of exist-

A1 D1 A2 D2 A3

D3: Pool

Figure 7. Feedback loop pattern

ing tokens; however, this does still place a structure-
and memory-dependent limit on the number of steps
for which a simulation may be run. The simulator
would benefit from a comprehensive treatment of ar-
chitectural cycles.

In the majority of these cases, the simulator provided
crucial insight into the existence and nature of a problem
resulting from the combination of the state-based semantics
and arrangements that appear, at the informal level, to be
valid. The modifications listed above were adequate in cor-
recting these misunderstandings and allowing all of the test
cases to run.

The validation of the four refactoring patterns showed
that the transformations identified in those patterns did not
all result in working HADES models. However, for those
refactoring patterns that did not work (the feedback loop
patterns with unnecessary synchronous terminations) a sim-
ple alternative was found that resulted in the desired out-
come. Hence, while the original description of the pattern
was incorrect, the simulator was able to help in both iden-
tifying the incorrectness and validating that the corrected
version worked as expected.

One further anomaly that was not expected was the pres-
ence of livelock in the missile launcher model. This was due
to the use of data pools at the edges of the model, with one
side constrained by model activity and the other side com-
pletely unconstrained. This allowed the pools to continually
cycle around the unconstrained path rather than engaging
with any of the activities. Several ideas were generated for
ways of correcting this situation, including virtual activities,
additional behaviour descriptions to impose fairness criteria
or new data area types to represent external inputs and out-
puts. There was not time during the simulator project to try
any of these suggestions, however.

The original goal of validating the refactoring patterns
through simulation has been achieved. In addition, cor-
rections were made to these patterns and to the original
case study model that was used to guide the hand-coding
of the original SPARK Ada implementation. The simulator
has also been useful in demonstrating the concepts of the
HADES architectural style to colleagues.



Table 3. Pattern evaluation results
Refactoring Pair Deadlock Identified Deadlock Eliminated Intent Preserved
f13, f14 Yes Yes Yes
f18. f19 Yes Yes Yes
fpush, f17a Yes No Yes*
fpull, f17b Yes No Yes*

4. Related Work

In the field of software architecture, the domain of
dependable embedded systems is well-represented. The
MASCOT [19] style was one of the first styles specific to
this domain, and is the inspiration for much of the struc-
ture of HADES. Activities, explicit data areas and the var-
ious data area protocols are all drawn from MASCOT. The
Real-Time Network formalism [17] expanded on the MAS-
COT ideas by providing an underlying logic with which to
describe its semantics. The logic is more general than the
state-machine description used in HADES, but the connec-
tion between the architecture and the results of the analysis
is perhaps less obvious to the casual user.

HRT-HOOD [5] is an object-based style with hierar-
chical decomposition, synchronous and asynchronous mes-
sages and explicit methods. It fits well with Ada-based im-
plementations, and provides some inspiration for HADES
in its hierarchical decomposition and message-passing con-
cepts.

Most architectural styles in use within the research com-
munity are defined using some kind of formal semantics,
and that set of semantics is typically only concerned with
interactions. Taking Acme [6] as one example:

. . . Acme relies on an open semantic framework
that provides a basic structural semantics while
allowing specific ADLs to associate computa-
tional or run-time behaviour with architectures. . .

The semantic framework for Acme is based on relations
and constraints. There are other architectural description
languages that were developed in the same era; for exam-
ple, Wright [2] uses an event/process notation based on CSP
[8]. The focus of this architectural style is on completeness
and consistency of interfaces. Event-based definitions are
also found in Rapide [10], where the semantics are defined
by partially-ordered sets of events. Here, the focus is on
animation and event traces in order to detect anomalous be-
haviours. The Darwin style [11] is based on the π-calculus
and is geared towards hierarchical distributed processing. In
each case, the designer of the language has chosen a formal
basis for that language that reflects the properties of interest
in a particular domain.

The C2SADEL [14] approach is more mature, based on
experience in evolving architectures for rapid development

using off-the-shelf components. Its formal basis has been
kept to a minimum in favour of practical concerns with the
description of large and complex architectures. It uses a
type theory and first-order predicate logic to describe the
structure and behaviour (precondition, postcondition and in-
variant) of the architecture.

AADL [3] is an emerging standard for avionics architec-
ture systems, derived from the MetaH [21] language. The
main formal constructs of the MetaH language are types and
state machines; the types define properties that are used dur-
ing analysis. AADL is particularly concerned with schedu-
lability and fault-tolerance, and uses a model of the under-
lying hardware platform during analysis.

Simulation is widely used for the analysis of physi-
cal computer hardware, from individual processors to dis-
tributed networks. However, it rarely appears as a way of
dealing with software architecture. Indeed, in a comprehen-
sive survey of software architecture styles [13], simulation
was not included in the classification scheme. The concept
does appear in Bosch’s work on software architecture and
product lines [4], but only in terms of implementing the ar-
chitecture in a representative simulation environment before
deployment.

Model-checking for architectural descriptions is gener-
ally targeted at properties such as liveness and mutual ex-
clusion [7]. The formal basis of Giannakopoulou’s work
on the model-checking of Darwin architectures is similar to
HADES in its use of finite-state automata, and that basis
is also similar to RTN in its use of linear temporal logic.
The CBabel language [9] is aimed at the verification of co-
ordination, distribution and quality of service in concurrent
architectures, and uses precondition/postcondition seman-
tics. It also uses reflection to impose architectural con-
straints on an implementation, in a manner similar to an
aspect-oriented language. Model-checking is also seen in
static correctness and completeness checks for the Wright
language [1].

5. Conclusions and Further Work

HADES is an architectural style for dependable em-
bedded systems offering the software architect an implicit-
interface style of decomposition while decoupling transac-
tion control through the architecture. It was found to be
useful in the development of a sample thrust reverser sys-



tem [20] but required further validation before it would
gain acceptance for wider use in the dependable systems
domain. The work reported in this paper describes a sim-
ulation environment targeted at demonstrating the validity
of the HADES refactoring patterns. We believe that this
simulator environment is a valuable tool in understanding
both the complex operational semantics of HADES and the
refactoring patterns for HADES architectures.

We intend to carry out further validation of the HADES
ideas by using a model-checking environment to assess
worst-case scenarios for liveness and data freshness prop-
erties. This should provide a basis for the integration of
HADES with other projects within our research group.

The hierarchical nature of HADES and its use in
software for dependable embedded systems implies that
HADES will eventually be integrated with standard system-
level environments such as Simulink. Although the de-
composition paradigm is slightly different, we remain op-
timistic that HADES can provide for the analysis of impor-
tant implementation characteristics for systems created us-
ing Simulink. An alternative strategy may be to leverage the
SysML standard [15] as a way of unifying software-level
and system-level analyses.

References

[1] R. Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon University, School of Com-
puter Science, Jan. 1997.

[2] R. Allen and G. Garlan. Formalizing Architectural Connec-
tion. In Proceedings of the Sixteenth International Confer-
ence on Software Engineering, pages 71–80, May 1994.

[3] R. Allen, S. Vestal, D. Cornhill, and B. Lewis. Using an
Architecture Description Language for Quantitative Analy-
sis of Real-Time Systems. In Proceedings of the Third In-
ternational Workshop on Software and Performance, pages
203–210, July 2002.

[4] J. Bosch. Design and Use of Software Architectures.
Addison-Wesley, 2000.

[5] A. Burns and A. Wellings. Hard Real-Time HOOD: A Struc-
tured Design Method for Hard Real-Time Ada Systems. El-
sevier, 1995.

[6] D. Garlan, R. Monroe, and D. Wile. Acme: An Architec-
ture Description Interchange Language. In Proceedings of
CASCON, 1997.

[7] D. Giannakopoulou. Model Checking for Concurrent Soft-
ware Architectures. PhD thesis, Department of Comput-
ing, Imperial College of Science, Technology and Medicine,
University of London, 1999.

[8] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[9] O. Loques, A. Sztajnberg, J. Leite, and M. Lobosco. On
the Integration of Meta-level Programming and Configu-
ration Programming. Lecture Notes in Computer Science,
(1826):191–210, June 2000.

[10] D. C. Luckham, J. J. Kenney, L. M. Augustin, et al. Specifi-
cation and Analysis of System Architectures Using Rapide.
IEEE Transactions on Software Engineering, 21(4):336–
355, Apr. 1995.

[11] J. Magee and J. Kramer. Dynamic Structure in Software Ar-
chitectures. In Proceedings of ACM SIGSOFT’96: Fourth
Symposium on the Foundations of SoftwareEngineering,
pages 3–14, Oct. 1996.

[12] T. MathWorks. Simulink — Simulation and Model-Based
Design. http://www.mathworks.com/products/
simulink.

[13] M. Medvidovic and R. Taylor. A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
26(1):70–93, Jan. 2000.

[14] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution. In Proceedings of the Inter-
national Conference on Software Engineering, 1999.

[15] S. Partners. SysML Specification. http://www.sysml.
org/artifacts.htm, Jan. 2005.

[16] S. E. Paynter. A BVRAAM Case Study in Safety Engi-
neering: Specification and Design. Technical Report 23121,
MBDA Missile Systems, Dec. 2001.

[17] S. E. Paynter, J. A. Armstrong, and J. Haveman. ADL:
An Activity Description Language for Real-Time Networks.
Formal Aspects of Computing, 12(2):120–140, Feb. 2000.

[18] M. Shaw. Comparing Architectural Design Styles. IEEE
Software, 12(6):27–41, Nov. 1995.

[19] H. R. Simpson. The MASCOT Method. Software Engineer-
ing Journal, 1(3):103–120, 1986.

[20] Z. R. Stephenson and D. L. Buttle. The HADES Architec-
tural Style — Development and Definition. Technical Re-
port YCS 373, University of York Department of Computer
Science, Feb. 2004.

[21] S. Vestal. MetaH User’s Manual. Honeywell Technology
Center, 1998.


